四川省成都市四川天府新区综合高级中学2023-2024高三下学期模拟测试(一)文科数学试题(含解析)

四川省成都市四川天府新区综合高级中学2023-2024高三下学期模拟测试(一)文科数学试题(含解析)

四川天府新区综合高级中学2024届高三数学模拟测试(一)
文 科
一、单选题
1.已知集合,,则( )
A. B. C. D.
2.已知,则( )
A.0 B.1 C. D.
3.已知非零向量满足,且,则与的夹角为( )
A. B. C. D.
4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为( )(ln19≈3)
A.53 B.60 C.63 D.66
5.设函数在区间上单调递减,则的取值范围是( )
A. B.
C. D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.216号学生 C.600号学生 D.815号学生
7.设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=( )
A. B.
C. D.
8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=( )
A.8 B.4
C.3 D.2
9.过点与圆相切的两条直线的夹角为,则cos=( )
A. B. C. D.
10.双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为( )
A. B. C.2sin40° D.2cos40°
11.点(0,﹣1)到直线距离的最大值为( )
A.4 B.2 C. D.
12.已知函数的定义域为,,则下列结论错误的是( )
A. B.
C.为的极小值点 D.是偶函数
二、填空题
13.曲线在点处的切线方程为 .
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
15.已知函数在区间有且仅有2个零点,则的取值范围是 .
16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的表面积为 .
三、解答题
17.已知在中,.
(1)求;
(2)设,求边上的高.
18.设等比数列{}满足,.
(1)求{}的通项公式;
(2)记为数列{}的前n项和.若,求m.
19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:.
20.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
21.已知函数.
(1)讨论的单调性;
(2)证明:当时,.
22.在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.四川天府新区综合高级中学2024届高三数学模拟测试(一)
文 科
一、单选题
1.已知集合,,则( )
A. B. C. D.
【答案】B
【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出.
方法二:将集合中的元素逐个代入不等式验证,即可解出.
【详解】方法一:因为,而,
所以.
故选:C.
方法二:因为,将代入不等式,只有使不等式成立,所以.
故选:B.
2.已知,则( )
A.0 B.1 C. D.
【答案】D
【分析】根据复数的除法运算求出,再由共轭复数的概念得到,从而解出.
【详解】因为,所以,即.
故选:D.
3.已知非零向量满足,且,则与的夹角为
A. B. C. D.
【答案】A
【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选A.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.
4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为( )(ln19≈3)
A.53 B.60 C.63 D.66
【答案】D
【分析】将代入函数结合求得即可得解.
【详解】,所以,则,
所以,,解得.
故选:D.
【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.
5.设函数在区间上单调递减,则的取值范围是( )
A. B.
C. D.
【答案】C
【分析】利用指数型复合函数单调性,判断列式计算作答.
【详解】函数在R上单调递增,而函数在区间上单调递减,
则有函数在区间上单调递减,因此,解得,
所以的取值范围是.
故选:C
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生 B.216号学生 C.600号学生 D.815号学生
【答案】B
【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.
【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,
所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,
所以,
若,则,不合题意;若,则,不合题意;
若,则,符合题意;若,则,不合题意.故选B.
【点睛】本题主要考查系统抽样.
7.设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=
A. B.
C. D.
【答案】A
【分析】先把x<0,转化为-x>0,代入可得,结合奇偶性可得.
【详解】是奇函数, 时,.
当时,,,得.故选A.
【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.
8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=
A.8 B.4
C.3 D.2
【答案】A
【分析】利用抛物线与椭圆有共同的焦点即可列出关于的方程,即可解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
【详解】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选A.
【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.
9.过点与圆相切的两条直线的夹角为,则cos=( )
A. B. C. D.
【答案】C
【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得,利用韦达定理结合夹角公式运算求解.
【详解】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,

即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:C.

10.双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为
A. B. C.2sin40° D.2cos40°
【答案】B
【分析】由双曲线渐近线定义可得,再利用求双曲线的离心率.
【详解】由已知可得,
,故选B.
【点睛】对于双曲线:,有;对于椭圆,有,防止记混.
11.点(0,﹣1)到直线距离的最大值为( )
A.4 B.2 C. D.
【答案】D
【分析】首先根据直线方程判断出直线过定点,设,当直线与垂直时,点到直线距离最大,即可求得结果.
【详解】由可知直线过定点,设,
当直线与垂直时,点到直线距离最大,
即为.
故选:D.
【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.
12.已知函数的定义域为,,则下列结论错误的是( )
A. B.
C.为的极小值点 D.是偶函数
【答案】C
【分析】方法一:利用赋值法,结合函数奇偶性的判断方法可判断选项ABC,举反例即可排除选项D.
方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.
【详解】方法一:
因为,
对于A,令,,故正确.
对于B,令,,则,故B正确.
对于C,令,,则,
令,
又函数的定义域为,所以为偶函数,故正确,
对于D,不妨令,显然符合题设条件,此时无极值,故错误.
方法二:
因为,
对于A,令,,故正确.
对于B,令,,则,故B正确.
对于C,令,,则,
令,
又函数的定义域为,所以为偶函数,故正确,
对于D,当时,对两边同时除以,得到,
故可以设,则,
当肘,,则,
令,得;令,得;
故在上单调递减,在上单调递增,
因为为偶函数,所以在上单调递增,在上单调递减,

显然,此时是的极大值,故D错误.
故选:C.
二、填空题
13.曲线在点处的切线方程为 .
【答案】.
【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程
【详解】详解:
所以,
所以,曲线在点处的切线方程为,即.
【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
【答案】0.98.
【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.
【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为.
【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.
15.已知函数在区间有且仅有2个零点,则的取值范围是 .
【答案】
【分析】
令,得有3个根,从而结合余弦函数的图像性质即可得解.
【详解】
因为,所以,
令,则有3个根,
令,则有3个根,其中,
结合余弦函数的图像性质可得,故,
故答案为:.
16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的表面积为 .
【答案】
【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中,且点M为BC边上的中点,
设内切圆的圆心为,

由于,故,
设内切圆半径为,则:

解得:,其体积:.
故答案为:.
三、解答题
17.已知在中,.
(1)求;
(2)设,求边上的高.
【答案】(1)
(2)6
【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;
(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.
【详解】(1),
,即,
又,



即,所以,
.
(2)由(1)知,,
由,
由正弦定理,,可得,

.
18.设等比数列{an}满足,.
(1)求{an}的通项公式;
(2)记为数列{log3an}的前n项和.若,求m.
【答案】(1);(2).
【分析】(1)设等比数列的公比为,根据题意,列出方程组,求得首项和公比,进而求得通项公式;
(2)由(1)求出的通项公式,利用等差数列求和公式求得,根据已知列出关于的等量关系式,求得结果.
【详解】(1)设等比数列的公比为,
根据题意,有,解得,
所以;
(2)令,
所以,
根据,可得,
整理得,因为,所以,
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
【答案】(1) 增长率超过的企业比例为,产值负增长的企业比例为;(2)平均数;标准差.
【详解】(1)由题意可知,随机调查的个企业中增长率超过的企业有个,
产值负增长的企业有个,
所以增长率超过的企业比例为,产值负增长的企业比例为.
(2)由题意可知,平均值,
标准差的平方:

所以标准差.
20.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
【答案】(1)见解析;
(2).
【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;
(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.
【详解】(1)连接,
,分别为,中点 为的中位线

又为中点,且 且
四边形为平行四边形
,又平面,平面
平面
(2)在菱形中,为中点,所以,
根据题意有,,
因为棱柱为直棱柱,所以有平面,
所以,所以,
设点C到平面的距离为,
根据题意有,则有,
解得,
所以点C到平面的距离为.
21.已知函数.
(1)讨论的单调性;
(2)证明:当时,.
【答案】(1)答案见解析
(2)证明见解析
【分析】(1)先求导,再分类讨论与两种情况,结合导数与函数单调性的关系即可得解;
(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.
方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.
【详解】(1)因为,定义域为,所以,
当时,由于,则,故恒成立,
所以在上单调递减;
当时,令,解得,
当时,,则在上单调递减;
当时,,则在上单调递增;
综上:当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)方法一:
由(1)得,,
要证,即证,即证恒成立,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
方法二:
令,则,
由于在上单调递增,所以在上单调递增,
又,
所以当时,;当时,;
所以在上单调递减,在上单调递增,
故,则,当且仅当时,等号成立,
因为,
当且仅当,即时,等号成立,
所以要证,即证,即证,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
22.在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
【答案】(1),l的极坐标方程为;(2)
【分析】(1)先由题意,将代入即可求出;根据题意求出直线的直角坐标方程,再化为极坐标方程即可;
(2)先由题意得到P点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.
【详解】(1)因为点在曲线上,
所以;
即,所以,
因为直线l过点且与垂直,
所以直线的直角坐标方程为,即;
因此,其极坐标方程为,即l的极坐标方程为;
(2)
[方法一]【交轨法】
由题可得的直线方程为,直线l方程为.设点,联立两直线的方程消去k,得点P轨迹方程为,化为极坐标方程为,又点P在第一象限且在圆内,得角取值范围为.
[方法二]【利用数量积为0求得直角坐标方程,然后计算极坐标方程】
设,由题意可知,所以,即.将代入上式可得点P轨迹的极坐标方程,即.又点P在线段上,且,所以.
故点P轨迹的极坐标方程为.
[方法三]【最优解:利用斜率之积为求得直角坐标方程,然后计算极坐标方程】
设,则, ,
由题意,,所以,故,整理得,
因为P在线段OM上,M在C上运动,所以,
所以,P点轨迹的极坐标方程为,即.

0 条评论

目前没有人发表评论

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。